From: U. E. Mart in
Title: Extension Solls Speciallst
Re:

Enciosed are the yleld figures that Jiw street gove of your experiment. I hove indicated in the top half the yleld of the meli plots without witregon, and belew, the secend half of the experiment, yield with nitregon. I hove indicated soparate LSD fer the two helves of the experiment.

Men:me]
ce: Jim street
Enclosure

Yield of "Cut" Vegetation
Tohama County
Street \& Maxwell

Treatment	Rep 1	Rep 11	Rep 111	Sum of 3 Reps	
Check	50	30	65	145	
572	125	40	30	195	
P160	140	95	30	265	150167
ps	220	105	115	440	
N_{100}	580	770	750	2100	
NS	425	610	685	1720	
MP	1320	1235	930	$3{ }^{2} 485$	L50 766
NPS	1290	1365	1190	3845	

DRY MATTER YIELD COMPARISONS AND COSTS OF RANGE FERTILIZATION OVER A 4-YEAR PERIOD - REHSE RANCH

a, b, c, d, e, f Yields in the same year bearing different superscript letters are significantly different (P く.05) .

2 Cost includes $\$ 1.00$ per acre application cost. ASC payment not deducted.

One hundred pounds per acre of elemental sulfur was applied to 1,300 acres of range on the Miller Ranch west of Red Bluff in the early fall of 1965. Soils in the fertilized area are predominantly Naciemiento, Newville and Dibble. The area is in the "bald hill" belt of rangeland and is considered "bur clover" country. No forage clippings were taken in the spring of 1966, a very poor range year, and no visible response was apparent.

Exclosures were established in the fall of 1966 and the following forage figures are taken from these exclosures (using the square foot sampling method) and extended to a per acre basis. Exclosures were established on top of the hills as well as in the swales in both the fertilized and control fields. One half of each exclosure area has been completely cleaned or clipped each year with the remaining half not cleared of old forage growth. This plan was established to study the effect of complete forage removal (overgrazing) compared to undergrazing or no use at all.

Figures are pounds of air dry forage per acre.

	Fertilized		Unfertilized	
	1967	1968	1967	1968
Hill (not clipped)	8,240.1	6,295.8	5,172.7	4,083.7
Swale (not clipped)	6,960.5	5,785.3	7,387.0	3,743.4
total	15,200.6	12,081.1	12,559.7	7,827.1
average	7,600.3	6,040.5	6,279.85	3,913.5
Hill (clipped)	6,316.2	5,104.7	4,468.9	3,062.8
Swale (clipped)	5,481.3	6,636.1	4,346.9	3,403.1
total	11,797.5	11,740.8	8,811.8	6,465.9
average	5,898.75 ${ }^{\text { }}$	5,870.4	4,405.9	3,232.9

Summary:

1967

.- Combined average of hill and swale samples (not clipped) indicated a 21% increase in forage in the fertilized field.
-. Combined average of hill and swale samples (clipped) indicated a 33.88% increase in forage in the fertilized field.
-- Combining the weights of all four samples from each field indicated a 26.3% advantage from the fertilized field.

1968
-- Combined average of hill and swale samples (not clipped) indicated a 54.3% increase in forage in the fertilized field.
-- Combined average of hill and swale samples (clipped) indicated an 81% increase in forage in the fertilized field.
-- Combining the weights of all four samples from each field indicated a 66.66% advantage from the fertilized field.

TOTAL ESTIMATED FORAGE DIFFERENCES

	1967	1968	
Fertilized (not clipped)	15,200.6	12,081.7	
Unfertilized (not clipped)	12,559.7	7,827.1	
	2,640.9	4,254.6	6,895.5 total extra forage two seasons
Fertilized (clipped)	11, 797.5	11, 740.8	
Unfertilized (clipped)	8,811.8	6,465.9	
	2,985.7	5,274.9	8,260.6 total extra forage two seasons

Cost of sulfur at time of
application, September, $1965 \quad \$ 50.00$ per ton or $\$ 2.50$ per acre Cost of air application 1ϕ per pound or

Total cost applied -- \quad| 1.00 per acre |
| :--- |
| $\$ 3.50$ per acre |

```
Teisseire Fertilizer Trial - page 2
```

Date applied Early - 11/18/66 Late - 2/11/67 Date harvested - 5/22/67*
Fertilizer applied to an existing stand of rose clover

Material and Rate	Element and Time Applied	Yield dry wt. \#/acre	Yield as \% of control	\# forage/acre over check	Cost of fertilizer and application
13. 50 \# elemental sulfur	Sulfur late	3,051	84\%	-562	$\$ 1.50+1.00=\$ 2.50$
14. 187\# treble super 50\# elemental sulfur	Phosphate early Sulfur late	4,826	133\%	1,213	$\begin{aligned} & \$ 7.91 \mathrm{P} \\ & \frac{1.50 \mathrm{~S}}{\$ 9.41+1.00=\$ 10.41} \end{aligned}$
15. 250\# golden triple phosphate	Phosphate late Sulfur late	5,235	144\%	1,622	\$11.00 + 1.00 = \$12.00
16. 250\# golden triple phosphate plus Molybdenum	Phosphate early Sulfur early Mo early	5,931	164\%	2,318	\$12.00 + 1.00 = \$13.00

*not harvested in 1968

Tehama County Farm Advisors Office
Box 370, Red Bluff, Ca 96080
Kenneth W. Ellis, Farm Advisor

by Ken Ellis
Farm Advisor, Tehama County
Walter Johnson
Farm Advisor, Shasta County

The costs of owning and maintaining rangeland, within the same political subdivision, vary with the acreage involved, its productivity level and the number of livestock carried on the range. Current rangeland prices may not necessarily reflect productive value or income producing potential from agricultural use. The location, possible use for subdivision or recreation and/or certain tax advantages prompts individuals and companies other than ranchers to invest in rangeland. Actual rental or lease values on today's market tend to reflect the annual costs of rangeland minus interest on investment. The interest on investment charges in this cost study are computed on a no equity basis.

If ranches with the same acreage but different levels of productivity are considered, the investment in buildings, corrals, fences and equipment would be higher per acre for the more productive range since more cattle can be carried. More acres of the lower producing range are required to carry each animal unit, therefore the investment in buildings, corrals, and equipment would be less per acre. Fences, maintenance costs, depreciation and insurance would also be less per acre but higher per animal unit.

The figures presented in this cost study are examples. Each rangeland owner may need to adjust certain costs to fit varying situations.

Sectian I

This first section illustrates the basic requirements in acres and the value of fences, buildings, corrals and other equipment to maintain 100 animal units for the normal winter grazing season (November or December through May) for three ranges of different productive capacity. When stock is carried year round the number of acres required per animal unit is greatly increased.

Productive Level

	High	Medium	Low
Acres per animal unit*	7	15	25
Acres per 100 animal units	700	1,500	2,500
Fence, miles (4 fields)	6.3	9.2	12.0
Fence value ($\$ 1,200$ mile	\$7,500	\$11,040	\$14,400
Building, corrals, scales, etc.	\$8,000	\$8,000	\$8,000
Repairs and maintenance per unit	\$300	\$400	\$500

*One animal unit $=$ one 1,000 pound mature cow. Rule of thumb for sheep is 5 ewes $=1$ animal unit.

The table below illustrates the yearly costs of owning and maintaining rangeland per acre at the three productive levels stated in section I. No improvement practices are considered. The purchase price per acre in this table includes fences plus barn, other buildings (not including dwelling) and minimum corrals for handling stock.

	Productive Level		
	High	Medium	Low
Investment (including land, fences, corrals, buildings and equipment)	\$100.00	\$60.00	\$35.00
Annual Costs			
Interest on investment @ 6.5\%	\$6.50	\$3.90	\$2.28
Taxes ($\$ 7$ rate on taxable value)	\$1.75	\$1.05	\$. 61
Depreciation on fences (20 years)	\$. 54	\$. 37	\$. 29
Depreciation on other improvements (20 years)	\$. 57	\$. 27	\$. 16
Repairs and maintenance (fences and roads)			
Liability Insurance Fire insurance on buildings and corrals	\$. 06	\$. 04	\$. 03
	\$. 13	\$. 06	\$. 04
Total yearly costs per acre	\$9.98	\$5.96	\$3.61
Total range costs per 100 cow* unit	\$6,986.00	\$8,940.00	\$9,025.00
*or 500 ewes			

Acknowledgment and appreciation to Philip S. Parsons, Agricultural Extension Economist, and Tehama and Shasta County ranchers assisting in compiling costs and values.

607 Fifth Street
Orland, California
Telephone: UNderhill 5-4487
August 10, 1965

Mr. Vernon Rehse
Star Route, Bor 42
Oriand, California
Dear Vernon:
Enclosed is a table showing the results of our fertilizer test and some astimates of the dollars and cents involved.

The unfertilized and the sulfur-fertilized plots yielded a little over 2 青 ton to the acre compared to 3 ton for the single superphosphate and a little under 4 ton for the ammonium sulfate. There was no difference between the unfertilined and the elemental sulfur treatments. The single superphosphate increased the yield 14% and the ammonium sulfate 49%.

Figuring the cost of the fertilizer at $\$ 8.15$ applied for the single super and $\$ 8.00$ for the ammonium sulfate, the extra feed cost $\$ 21.59$ ton from the single super and $\$ 6.16$ a ton for the ammonium sulfate.

If we arbitrarily figure that the land would rent for $\$ 4.00$ an acre, then the cost per ton of feed would be about $\$ 1.50$ for the unfertilized, $\$ 2.85$ for the elemental sulfur, $\$ 4.50$ for the 200 lbs . of elemental sulfur, $\$ 4.00$ for the single super and $\$ 3.00$ for the ammonium sulfate.

If we estimate the check would yield 40 lbs . of beef per acre, then the single super should give 114% times that or 46 lbs. , and the ammonium sulfate 60 lbs. Dividing the pounds by the total cost, including "rent", the cost would be 10 c a pound on the control. 194 for the 100 lbs . of sulfur, 30% ter the 200 lbs. , $26 ¢$ for the single super and $20 c$ for the ammonium sulfate.

These estimates do not take into account the fact that the feed fertilized with single superphosphate or ammonium sulfate is higher in protein and better in quality and also grew faster and, therefore, was available to the cattle earlier. Also, we are figuring the total yield clipped all the way to the ground. Here again we do not give full credit to the fertilized plots because a greater percent of the heavier yielding plots would be available to cattle compared with the lower yielding plots. Also because fertilizer increases the palatability, probably more of the fertilized feed would be eaten than that which was not fertilized.

Sincerely yours,

Monte Bell
Farm Advisor
MB: LP
cc: James E. Street
Ken E1118
Cooperative Extension Work in Agriculture and Home Economics, U. S. Department of Agriculture, University of California and County of Glenn cooperating.

REHSE FERTILIZER PLOT

Applied January 13, 1965

	1	2	3	4	5	6	7
Treatment	None	$\begin{aligned} & 100 \\ & \text { E. Sulf. } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { E. Sulf. } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { E.Sulf. } \end{aligned}$	$\begin{aligned} & 200 \\ & \text { E.Sulf. } \end{aligned}$	$\begin{aligned} & 300 \\ & \text { SSP } \end{aligned}$	$\begin{gathered} 300 \\ \text { Am. Sulf. } \end{gathered}$
Cost/acre applied	0	\$3.60	\$3.60	\$3.60	\$7.80	\$8.15	\$8.00
"Rent"	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00
Feed cost/acre	\$4.00	\$7.60	\$7.60	\$7.60	\$11.80	\$12.15	\$12.00
Yield lbs./acre	5278	5264	5327	5454	5138	6033	7875
\% of check	100	100	100	100	100	114	149
Lbs./acre increase \$/ton extra feed					-	$\begin{aligned} & 755 \\ & \$ 21.59 \end{aligned}$	$\begin{aligned} & 2597 \\ & \$ 6.16 \end{aligned}$
\$/ton feed	\$1.52	\$2.88	\$2.85	\$2.79	\$4.59	\$4.02	\$3.04
Est. beef/acre	40 lbs.	40 lbs	40 lbs.	40 lbs.	40 lbs.	46 lbs.	60 lbs.
\$/1b. beef	10 C	19	19¢	194	$30 ¢$	26¢	$20 ¢$

